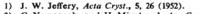
SHORT COMMUNICATIONS

On the Influence of Sodium Oxide upon the Crystal Structure of Tricalcium Silicate

By Goro Yamaguchi and Hiroshi Uchikawa

(Received August 10, 1961)

The crystal structure of pure 3CaO·SiO₂ and the solid solution of the system 3CaO·SiO₂-Al₂O₃-MgO, so-called alite, had been determined^{1,2}). No results, however, had been reported on the influence of Na₂O upon 3CaO·SiO₂ and there existed a need for detailed investigation on this system.


In the present paper, the authors describe the results of the investigation on the formation and decomposition of the solid solution of the system 3CaO·SiO₂-Na₂O and its crystal structure.

Pure 3CaO·SiO₂ was synthesized by following procedures, that is, the mixtures of alkali free guaranteed reagent of CaCO₃ and SiO₂ were heated in platinum crucible at 1500°C, then cooled rapidly, pulverized, reheated several times until no free CaO was found. Then various amount of guaranteed reagent of Na₂·CO₃ were added to 3CaO·SiO₂ and mixed sufficiently, heated at 1450°C for 30 min. and then cooled rapidly to room temperature.

This procedure was necessary to obtain the well-crystallized 3CaO·SiO₂-Na₂O solid solution. Chemical compositions, refractive indices and specific gravity of the solid solution of this system are shown in Table I.

X-Ray diffraction pattens of the characteristic peaks at $51\sim52^{\circ}\text{C}$ in 2θ corresponding to (220) of Jeffery's trigonal cell^{1,2)} of the 3CaO-SiO₂-Na₂O solid solution measured by slow scanning and high resolution are shown in Fig. 1.

These characteristic peaks were triplet until Na_2O content increased to 0.33% and then changed to doublet. Further increase of a Na_2O content made no remarkable change of the X-ray diffraction patterns of the 3CaO·SiO₂-Na₂O solid solution until 0.71%. More further addition of Na_2CO_3 decomposed it into β -2CaO·SiO₂, Na_2O ·CaO·SiO₂ and free CaO.

G. Yamaguchi and H. Miyabe, J. Am. Ceram. Soc., 43, 219 (1960).

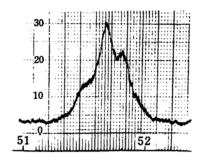


Fig. 1. X-Ray diffraction pattern of the characteristic peak of 3CaO·SiO₂-Na₂O solid solution (specimen No. 6).

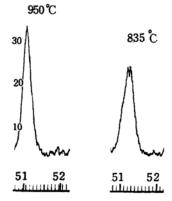


Fig. 2. High temperature X-ray diffraction patterns of the solid solution of the system 3CaO·SiO₂-Na₂O (specimen No. 6).

The triplet \rightleftarrows doublet change seemed corresponding to triclinic \rightleftarrows monoclinic transition.

In differential thermal analysis, the low Na_2O samples showed two endothermic and exothermic peaks at $900 \sim 1000^{\circ}C$ corresponding to the reversible transitions of triclinic \rightleftarrows monoclinic \rightleftarrows trigonal, but the high Na_2O (0.3 \sim 0.7% of Na_2O) samples showed one endothermic and exothermic peak of the monoclinic \rightleftarrows trigonal transition.

In high temperature X-ray diffraction, doublet peaks of the high Na₂O sample changed to singlet at about 900°C as shown in Fig. 2.

From the results of X-ray diffraction and differential thermal analysis, the high Na₂O solid solution was considered to be monoclinic structure. Assuming that this solid solution have Yamaguchi and Miyabe's monoclinic cell² corresponding to pseudo-orthorhombic cell

Table I. Chemical composition, refractive indices and specific gravity of synthesized pure $3\text{CaO}\cdot\text{SiO}_2$ and the solid solution of the system $3\text{CaO}\cdot\text{SiO}_2\text{-Na}_2\text{O}$

	Notation of	\mathbf{SiO}_2	CaO	Na ₂ O	Total	F. CaO	Sp. gr.	Refractive Indices
	specimen							α γ
Pure 3CaO· SiO ₂		26.14	73.85	-	99.99	0.00	3.149	1.718 ± 0.002 1.723 ± 0.002
3CaO· SiO ₂ -Na ₂ O solid solution	No. 1	26.13	73.81	0.05	99.99	0.12	-	
	No. 2	26.10	73.74	0.14	99.98	0.34	_	
	No. 3	26.08	73.67	0.25	100.00	0.73		
	No. 4	26.05	73.61	0.33	99.99	0.85		1.717 ± 0.002 1.721 ± 0.002
	No. 5	26.02	73.50	0.48	100.00	1.36	_	1.716 ± 0.002 1.720 ± 0.002
	No. 6	25.97	73.34	0.71	100.02	2.92		1.715 ± 0.002 1.718 ± 0.002

derived from Jeffery's trigonal cell¹³, lattice constants were determined by precise X-ray diffraction as follows:

a=12.262 a. u., b=7.053 a. u., c=25.086 a. u., $\beta=90^{\circ}07'$.

Calculated value of interplaner spacing from these lattice constants coinside with those obtained by the precise measurement of the diffraction peaks.

By heating for three hours at 1450° C, the monoclinic high Na₂O solid solution released Na₂O and changed into the triclinic low Na₂O solid solution.

The gradual decomposition of 3CaO·SiO₂ into 2CaO·SiO₂ and free CaO occurred at about 1250°C was fairly accelerated in the solid solution, compared with that of pure 3CaO·SiO₂.

The rate of hydration of the solid solution was larger than that of pure 3CaO·SiO₂.

This solid solution seems significant because alite in commercial portland cement clinker contains a few amount of Na₂O and effect of Na₂O can not be little.

Department of Applied Chemistry
Faculty of Engineering
The University of Tokyo
Hongo, Tokyo (G. Y.)

Central Research Laboratory of Onoda Cement Company Toyosu, Tokyo (H. U.)